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Abstract This paper develops a new variant of the classical alternating projection
method for solving convex feasibility problems where the constraints are given by the
intersection of two convex cones in a Hilbert space. An extension to the feasibility
problem for the intersection of two convex sets is presented as well. It is shown that
one can solve such problems in a finite number of steps and an explicit upper bound for
the required number of steps is obtained. As an application, we propose a new finite
steps algorithm for linear programming with linear matrix inequality constraints. This
solution is computed by solving a sequence of a matrix eigenvalue decompositions.
Moreover, the proposed procedure takes advantage of the structure of the problem.
In particular, it is well adapted for problems with several small size constraints.

Keywords Convex optimization · Linear matrix inequality · Eigenvalue problem ·
Alternating projections

1 Introduction

Convex optimization problems are theoretically well understood and there exists an
array of qualitative and quantitative results for their solution. A challenging problem
that often remains is to reduce the complexity of numerical solutions. In this paper
we do not intend to address completely this issue but rather provide a new direction
towards finiteness of the algorithm. Our main result is that one can solve some convex
optimization problems in a finite number of steps. Moreover, the method can be easily
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implemented for many interesting problems. One must only carry out the numerical
computation of the projection onto some associated cones.

As a starting point, consider the linear conic optimization problem

minimize 〈c, x〉
subject to x ∈ C1 ∩ C2,

(1)

where C1 and C2 are given convex cones in a Hilbert space, endowed with a scalar
product 〈., .〉.

Problem (1) represents an important class of convex optimization problems. Two
classical examples of great interest are those of linear programming and linear opti-
mization over constraints in cones of positive semidefinite matrices. We show that one
can solve interesting classes of such problems (1) by a finite step algorithm.

Optimization over linear constraints in the cone of positive semidefinite matrices
has a wide spread applicability, including e.g. several problems of interest in control
theory (Boyd et al. 1994). Henceforth, a particular interest of this paper is to provide
a procedure for solving such problems known as semidefinite programming (SDP)
or linear matrix inequality (LMI) feasibility problem (Boyd et al. 1994, Nesterov and
Nemerovski 1994, Vandenberghe and Boyd 1996). These kind of optimization prob-
lems possesses polynomial time complexity and have been earlier treated by interior
point methods due to Karmarkar (1984). A general theory for interior point methods
can be found in Nesterov and Nemerovski (1994). Note that the projective method
proposed in Gahinet and Nemirovski (1997), for solving LMI feasibility problems
converges in a finite number of steps. This method is related to the Dikin ellipsoid
method, combined with iterative step size selections and successive projections onto
a linear subspace. In this paper, we propose an approach that avoids the need for
step-size selections and uses a simple projection scheme. A further advantage is that
it can be used to solve general convex feasibility problems. Our approach for solving
SDP problems is based on the method of alternating projections (MAP). The idea of
using the MAP for solving systems of linear equalities is due to Von Neumann (1950).
Generalizations of the MAP can be found in Bregman (1965) and Gubin et al. (1967).
The MAP method was also used in Han (1988), to find the best approximate to any
given point in a Hilbert space from the intersection of a finite collection of closed
convex sets. For a survey on MAP algorithms we refer to Bauschke and Borwein
(1996). Also, in Skelton et al. (1997), applications to control theory are discussed.
We emphasize that the classical MAP method can only converge asymptotically to
a solution (and thus is not computed within finite number of iterations). Here, by
introducing a modification of the MAP method, we show that we can solve general
convex feasibility problems using a finite steps algorithm. Also, specialized algorithms
for LMI optimization are provided and the numerical solution can be computed by
consecutively solving a system of linear equations and a symmetric eigenvalue prob-
lem. Moreover, the presented procedure can take advantage of the structure of the
problem. In particular, it is numerically attractive for problems with several small
size constraints. An application of our approach can be found in Orsi et al. (2003),
where a comparison between our algorithm and convex optimization packages such
as SeDuMi (which is one of the most powerful LMI solvers) proposed by Sturm
(1999), has been made for solving linear matrix inequalities. It is shown in Orsi et al.
(2003) that the proposed algorithm performs favorably on LMIs with a large number
of constraints, relative to the number of variables.
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One of the limitations of most convex optimization algorithms is that the con-
straints are assumed to have a non empty interior. When such condition fails, there
may not exist any procedure that is guaranteed to find a solution. The exact complex-
ity of the semidefinite feasibility problem (i.e., finding a positive semidefinite matrix
in some affine space) is still unknown (Ramana 1997).

We notice that when applying the MAP to the semidefinite feasibility problem
(with empty interior), usually only asymptotic convergence results can be obtained.
Nevertheless, we show that it is still possible to use the proposed algorithm to check
in finitely many steps the infeasibility of this problem.

The structure of this paper is as follows. In Sect. 2, we present our general approach
to solve convex feasibility problems. First, the case of convex cones is treated and from
that, by the conification procedure, the analysis is extended to the general convex case.
Section 3 presents specific finite step algorithms for solving the strict LMI feasibil-
ity problems. Extensions to semidefinite LMI feasibility problems and semidefinite
programming appear in Sect. 4. Conclusions are given in Sect. 5.

Notation. We use the following notation. H denotes a real Hilbert space equipped

with a positive definite inner product 〈·, ·〉. o
S denotes the interior of S in H. S̄ denotes

the closure of S in H. R
m×n denotes the set of real matrices of size m× n. Sn denotes

the set of real symmetric matrices of size n. S+n denotes the subset of positive semi-
definite matrices of size n. MT denotes the transpose of the matrix M. Tr(M) is
the sum of diagonal elements of a square matrix M. I denotes the identity matrix,
with size determined from the context. Given square matrices M1, . . . , Ml, the matrix
diag(M1, . . . , Ml) denotes the block diagonal matrix with ith block Mi.

2 General approach

2.1 Preliminaries

The following is a classical result on the minimum distance function from a given point
to a convex set (see, e.g., Luenberger 1969).

Theorem 2.1 Let C be a nonempty closed convex subset of a Hilbert space H. Then for
any given element x in H there exists a unique element x̂ in C such that

‖x− x̂‖ ≤ ‖x− y‖, ∀y ∈ C. (2)

Furthermore, a necessary and sufficient condition such that x̂ satisfies (2) is given by

〈x− x̂, y− x̂〉 ≤ 0, ∀y ∈ C. (3)

The above result shows that the mapping x̂ �= PC(x) is well defined. The operator
PC is called the metric projection operator on C. For some special convex sets, the
condition (3) can be used to characterize explicitly PC .

Now, assume that we have a finite collection C1, . . . , CN of closed convex subsets
of a Hilbert space. The feasibility problem we are considering is to find an element
in the intersetion of these given subsets. This problem can be solved by successive
projections on these subsets. This method is due to Von Neumann (1950), for linear
subspaces. Its generalization to arbitrary convex subsets can be found in Bregman
(1965). Explicitly, we work with the following projection algorithm. Let C1, . . . , CN be
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closed convex sets in a Hilbert space H, such that C1 ∩ · · · ∩ CN �= ø. The alternating
projection algorithm consists in the sequence (xn), defined by the iteration scheme

xi+1 = PCφ(i) (xi), where φ(i) = (i mod N)+ 1. (4)

The above projection algorithm usually requires an infinite numbers of iterations.
Moreover, in an arbitrary Hilbert space it converges only weakly to an element
of the intersection of C1, . . . , CN . Strong convergence holds if the Hilbert space is
finite-dimensional, or under other conditions. However, we will see that the situa-
tion improves when the convex sets are conic. In particular, we provide a modified
algorithm that determines a feasible point in a finite number of steps and derive a
bound on the number of necessary iteration steps. Before stating and proving our
main technical result, we first recall some basic properties of convex cones.

2.2 Convex cones

Recall that a cone in a Hilbert space H is a subset invariant under nonnegative scalar
multiplication. Here we will exhibit some interesting properties of a special class of
cones called self dual.

Definition 2.1 Let S be a subset of a Hilbert space H. The set

S∗ �= {y ∈H | 〈y, x〉 ≥ 0, ∀x ∈ S}
is called the dual of S.

Definition 2.2 A cone C is called

• convex if αC + (1− α)C = C, ∀ 0 ≤ α ≤ 1,
• pointed if C ∩ − C = {0},
• solid if C has nonempty interior

o
C �= ø,

• self-dual if C∗ = C.

An important property of a closed convex cone C which is pointed is that the
interior of its dual is given by (see Berman (1973)):

{y ∈ C∗ | 〈y, x〉 > 0, ∀x ∈ C, x �= 0}.
Thus the interior of a pointed, closed convex and self-dual cone is also characterized
as:

o
C:= {y ∈ C | 〈y, x〉 > 0, ∀x ∈ C, x �= 0}.

In fact, the above description is valid for any closed convex solid cone. This follows
from the next result which can be found in Berman (1973).

Lemma 2.1 Let C be a closed convex solid cone. Then, its interior is given by:

o
C= {

x ∈ C | 〈x, y〉 > 0, ∀y ∈ C∗, y �= 0
}
.

An immediate consequence of the above lemma is:

Lemma 2.2 Let C be a closed convex solid cone. Then, for any element e ∈o
C we have

C + e ⊂ o
C, and thus C+ o

C ⊂ o
C.
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Proof By Lemma 2.1, it suffices to prove that for any c ∈ C + e, then 〈c, x〉 > 0 for
all nonzero x ∈ C∗. Since by definition 〈c− e, x〉 ≥ 0, then applying Lemma 2.1 yields
〈c, x〉 ≥ 〈e, x〉 > 0. �

The following result will be useful in the subsequent proof of the main convergence
result.

Lemma 2.3 Let C be closed convex cone in a Hilbert space H, such that
o
C �= ø. For any

element e∈ o
C we have that dist(C + e, (

o
C)c) > 0.

Proof Let e∈ o
C and suppose that dist(C + e, (

o
C)c) = 0. Thus, there exist sequences

xn ∈ C and yn ∈ (
o
C)c such that limn→+∞ ‖e + xn − yn‖ = 0. Since rn = e + xn − yn

goes to zero and e∈ o
C, we have e − rn ∈

o
C for some large n. Therefore, we have

e − rn + xn ∈
o
C, as C+ o

C⊂o
C. Since yn ∈ (

o
C)c and yn = e − rn + xn ∈

o
C this leads to a

contradiction and the proof is complete. �
The following useful property holds for any cone C with nonempty interior.

Lemma 2.4 Let C be a cone with nonempty interior. Then, given any elements x ∈ H
and e ∈ o

C there exists a positive scalar α > 0 such that αe− x ∈ C.

Proof Let x ∈ H and e ∈ o
C then there exists α > 0 big enough such that e−α−1x ∈ C.

Since C is a cone, we have αe− x ∈ C. �
2.3 Conic feasibility problem

We consider the following conic feasibility problem:

Find x ∈ o
C1 ∩ C2, (5)

where C1 and C2 are given convex closed cones in a Hilbert space H.
As an immediate consequence of Lemma 2.4 we obtain the following.

Theorem 2.2 Let e be any arbitrary element in the interior of C1. Then, the conic
feasibility problem (5) is equivalent to:

Find x ∈ (C1 + e) ∩ C2. (6)

Proof Let e be in the interior of C1 and x ∈ (C1 + e) ∩ C2. By using Lemma 2.2 then

we have C1 + e ⊂ o
C1. Therefore, also x ∈ o

C1 ∩ C2 holds.

On the other hand, assume that x ∈ o
C1 ∩ C2 and let e be any arbitrary element in

the interior of C1. By Lemma 2.4, this implies that there exists α > 0 with αx− e ∈ C1.
Since C2 is a cone and x ∈ C2 we have αx ∈ (C1 + e) ∩ C2 �= ø. �

We now prove our main result and show that the projection algorithm determines
a feasible point in a finite number of iteration steps. In particular, we derive an explicit
upper bound on the number of iterations steps involved. Roughly speaking, the num-
ber of iterations is proportional to the square of the distance from the starting point
to the set of all feasible solutions.

We first need the following preparatory result.
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Lemma 2.5 Let S1 and S2 be closed convex sets with S1∩ S2 �= ø and x0 ∈ H. Consider
the sequence defined by

x1 = PS1(x0),
x2 = PS2(x1),

...
x2m = PS2(x2m−1),

x2m+1 = PS1(x2m),
...

(7)

Then, for any x0 ∈ H and any integer m we have

dist(x0, S1 ∩ S2) ≥
√√
√
√

m∑

k=0

‖xk − xk+1‖2. (8)

Proof Let x0 ∈ H and x ∈ S1 ∩ S2. Consider the sequence (xk) generated as above.
For any k we have

‖xk − x‖2 = ‖xk − xk+1 + xk+1 − x‖2
= ‖xk − xk+1‖2 + ‖xk+1 − x‖2 + 2〈xk − xk+1, xk+1 − x〉. (9)

Since xk+1 is the projection of xk and since x ∈ S1∩S2, we obtain by applying Theorem
2.1 to this projection in the kth step

〈xk − xk+1, xk+1 − x〉 ≥ 0

and therefore we obtain

‖xk − x‖2 ≥ ‖xk − xk+1‖2 + ‖xk+1 − x‖2.

Now, iterating the inequalities for k = 0, . . . , m we obtain for any m

‖x0 − x‖2 ≥ ‖xm+1 − x‖2 +
m∑

k=0

‖xk − xk+1‖2.

Thus

inf
x∈S1∩ S2

‖x0 − x‖2 ≥
m∑

k=0

‖xk − xk+1‖2

and the proof is complete. �
Recall that in a Hilbert space H one has to distinguish between two natural concepts

of convergence, i.e., weak and strong convergence, respectively. Strong convergence
refers to the usual notion of convergence in a normed space. In contrast, a sequence
of points xk ∈ H is called weakly convergent to x ∈ H, if

〈xk, y〉 → 〈x, y〉,
holds for all y ∈ H. For finite dimensional Hilbert spaces these concepts are equiva-
lent, but for infinite-dimensional spaces strong convergence of a sequence is a strictly
stronger property. Note that the sequence (xk) converges weakly to an element of
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S1 ∩ S2. If the stronger condition
o
S1 ∩ S2 �= ø holds, then even strong convergence

holds (see Gubin et al. 1967). We now prove an amplification of that result for convex
cones. Later on we discuss the extension to the general convex case.

Theorem 2.3 Let C1 and C2 be closed convex cones in a Hilbert space H, possibly of

infinite dimension. Assume that
o
C1 ∩ C2 �= ø. For x0 ∈ H and e ∈ o

C1 consider the
alternating projection algorithm

x1 = PC1+e(x0),
x2 = PC2(x1),

...
x2m = PC2(x2m−1),

x2m+1 = PC1+e(x2m),
...

(10)

Then, we have
• The sequence (xn) converges strongly to a feasible point in the intersection (C1+ e)∩

C2 �= ø.

• The algorithm finds a feasible point x̂ ∈ o
C1 ∩ C2 in at most M iterations with

M ≤ γ (e)−2dist(x0, (C1 + e) ∩ C2))
2, (11)

where γ (e) := dist
(C1 + e, C2 ∩ (

o
C1)

c
)
.

Proof Strong convergence has been shown by Gubin et al. (1967). From Lemma 2.3,
it follows that γ (e) > 0. Let k denote the smallest integer such that ‖xk−xk+1‖ < γ (e).
k does exist, since otherwise, by Lemma 2.5, dist(x0, (C1+e)∩ C2))

2 ≥ (m+1)γ (e)2 for
all m, which is impossible. Suppose, e.g., that xk ∈ C1+e and therefore xk+1 ∈ C2. Using

Lemma 2.5, if xk+1 ∈
o
C1, then dist(x0, (C1+e)∩ C2))

2 ≥ kγ (e)2 and we found a solution
in at most k + 1 steps. Thus we are done. Otherwise ‖xk − xk+1‖ ≥ dist(

(C1 + e, C2 ∩
(

o
C1)

c
) = γ (e), which is impossible. Similarly for xk ∈ C2. Thus the result follows. �

2.4 Convex feasibility problems

We now propose an extension to more general feasibility problems where the associ-
ated sets are not necessarily cones. That is we consider the task

Find x ∈ o
S1 ∩ S2, (12)

where S1 and S2 are given closed convex sets in a Hilbert space H.
Using the standard technique of conification this is easily reformulated as a conic

feasibility problem. This then enables us to solve (12) using the previous result.
Conification of an arbitrary subset is defined as follows.

Definition 2.3 Let S be a subset in a Hilbert space H. Define con(S) ⊂ H× R by

con(S) := {(x, α)|α > 0, α−1x ∈ S}. (13)

The topological closure of con(S) in H× R

C(S) := con(S)

is called the conification of S.
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The following elementary properties are easily established. Here, R+ denotes the
set of positive real numbers.

Lemma 2.6 The following holds true for any subset S.

• If S is convex, then con(S) is convex.

• If S is closed, then con(S) is relatively closed in H× R+.

• con(
o
S) = o

con(S)=
o

con(S) .

Proof The first two claims are easy to prove. For the third one, assume first that (x, α)

is an element of con(
o
S). Then α−1x is an interior point of S. Thus, by continuity, there

exists r > 0 such that for all (y, β) in the r-neighborhood of (x, α) we have: β > 0 and
β−1y ∈ S. This shows the first part. For the second inclusion, assume that (x, α) is an
interior point of con(S). Then it is clearly nonzero and for any y in a sufficiently small
r-neighborhood of x we have that (y, α) is contained in con(S). This implies that x is
an interior point of S and the first equation has been shown. The second equation
follows immediately from the fact that con(S) is relatively closed in H × R+. This
completes the proof. �

Obviously the closure of any convex cone is again a convex cone. Therefore the
conification C(S) = con(S) is again a convex cone.

Proposition 2.1 The convex feasibility problem (12) is equivalent to the conic feasibility
problem

(con(S1)+ e) ∩ con(S2) �= ø. (14)

Here e denotes an arbitrary element in the interior of con(S1).

Proof The equivalence of the conditions

(con(S1)+ e) ∩ con(S2) �= ø

and
o

con(S1)
⋂

con(S2) �= ø,

follows immediately from Theorem 2.2. Since the sets Si are closed, we obtain from
the relative closedness property of con(Si) the equivalence with

o
con(S1)

⋂
con(S2) �= ø.

This in turn is equivalent with (12). �
The above result shows how one can approach the general convex feasibility prob-

lem (12). First (12) immediately implies
o
C1 ∩ C2 �= ø for the conified sets Ci := C(Si).

Thus by applying the projection algorithm to the conified sets we obtain after finitely
many steps a feasible point to (14). Then, by de-conifying, one can obtain a solution
to (12). Of course, this process works well only, if explicit formulas for the projection
operators for the conified sets are available. The open question therefore remains
how to express formulas for the projection operators of the conified sets in terms of
those for the projection operators of S1, S2. Nevertheless, the process can be carried
out in interesting special cases, as we show in the next section.
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3 LMI feasibility problem

Constraints involving positive definite (resp., semidefinite) matrices with unknown
structure (LMI in the literature) have a wide spread applicability, including, e.g., sev-
eral problems of interest in control theory (Boyd et al. 1994). For example, consider
the following controlled linear system:

dx
dt
= Ax+ Bu. (15)

The stabilization problem consists of finding a state-feedback control u = Kx (where
K is an unknown matrix) such that the corresponding trajectory goes to zero. It can
be shown that the stabilization problem is equivalent to the solvability of the follow-
ing constraints involving two positive definite matrices with the unknown variables
P = PT , Y (see Boyd et al. 1994)

−AP− PAT − BY − YTBT > 0 and P > 0.

In general, an LMI possesses the following form:

M(Y1, . . . , Yk) =
l∑

i=1

k∑

j=1

AijYjBij + BT
ij YT

j AT
ij > 0 (resp.,≥ 0), (16)

where the Aij, Bij are given matrices and the unknown variables are the matrices
Y1, . . . , Yk. The sign > means that the symmetric matrix M(Y1, . . . , Yk) must be pos-
itive definite (all its eigenvalues are strictly positive). In case there exists Y1, . . . , Yk
such that M(Y1, . . . , Yk) is positive definite, we say that the LMI is strictly feasible. Also,
in this case, the domain of the constraints generated by Y1, . . . , Yk has an nonempty
interior. When we use the sign≥, this means that the symmetric matrix M(Y1, . . . , Yk)

is needed only to be positive semidefinite ( its minimal eigenvalue can be zero). In
this case, we say that the LMI is non strictly feasible(or semidefinite feasibile) which
also includes the case that the domain of the constraints generated by Y1, . . . , Yk has
an empty interior.

Remark 3.1 Many LMI constraints M1 > 0, . . . , Mp > 0 are obviously equivalent to
one single LMI constraints M := diag(M1, . . . , Mp) > 0, where M is nothing else than
the matrix formed by the blocks M1, . . . , Mp.

Strict LMI feasibility problems often appear in different, equivalent formulations
(the general form (16) can be expressed in different matrix basis). For example, they
may be given either as

Find S > 0 such that,
Tr(FiS) = bi, i = 1, . . . , m,
where the Fi’s are linearly independent symmetric matrices

(17)

or as

Find x ∈ R
m such that,

F(x) ≡ F0 +
m∑

i=1

xiFi > 0,

where the Fi’s are linearly independent symmetric matrices.

(18)
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Such tasks consist in finding a matrix in the intersection of the cone of positive
definite matrices and a given affine subspace. In the sequel, we show how to apply our
previous procedure to derive a solution to the LMI feasibility problem.

Remark 3.2 Recall that Sn, S+n denote the sets of real symmetric and positive semi-
definite symmetric n×n- matrices, respectively. Thus Sn is a finite-dimensional Hilbert
space, endowed with the standard inner product 〈X, Y〉 := Tr(XY). Moreover, the

interior
o

S+n coincides with the open cone of positive definite matrices.

Applying the preceding conification procedure to these problems leads immedi-
ately to the following equivalent formulations to (17), (18)

Find (S, r) ∈
o

S+n ×R+ such that,

Tr
([

Ai 0
0 −bi

] [
S 0
0 r

])
= 0, i = 1, . . . , m.

(19)

Find (x0, x1, ..., xm) ∈ R+ × R
m such that,

x0

[
1 0
0 F0

]
+

m∑

i=1

xi

[
0 0
0 Fi

]
> 0. (20)

Of course, problem (19) is a special case of the block-structured conic feasibility
problem

Find S ∈ o
S
+
n ∩ L,

where L is a linear subspace of block-diagonal matrices.
(21)

In particular, problems (19) and (20) are special cases of the conic feasibility problem

Find S ∈ o
D ∩ L,

where D is a closed convex cone of S+n ,
and L is a linear subspace of Sn.

(22)

The following result then is a special case of Theorem 2.3.

Theorem 3.1 Assume that
o
D ∩ L �= ø. Then, starting from any element S0 ∈ Sn, the

alternating projection sequence

S1 = PL(S0),
S2 = PD+I(S1),

...
S2m = PD+I(S2m−1),

S2m+1 = PL(S2m),
...

(23)

finds in a finite number of steps an element Ŝ∈ o
D ∩ L .

For the numerical implementation of the above algorithm it is important that one
can explicitly compute the projection operator onto the set D + I. This is difficult in
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general. We focus on the special case D = S+n , where explicit computations can be
made. Thus we consider the LMI feasibility problem

Find S ∈ o
S
+
n ∩ L,

where L is a linear subspace of Sn.
(24)

Explicit formulas for the projection operators are then given by the following three
results.

Lemma 3.1 Let L be a finite dimension linear subspace in a Hilbert space H, with basis
vectors x1, . . . , xp of L . Then, the Gramian matrix G = (〈xi, xj〉)i,j≤p is invertible and
the metric projection onto L is given by

PL(x) =
p∑

i=1

αixi, (25)

where

(α1, . . . , αp)T = G−1(〈x, x1〉, . . . , 〈x, xp〉
)T .

Lemma 3.2 The metric projection of any M ∈ Sn onto S+n is computed as follows. Let
M = VDVT be the eigenvalue-eigenvector decomposition where D = diag(d1, . . . , dn).
Define D̄ = diag(d̄1, . . . , d̄n) with

d̄i = di if di ≥ 0,
d̄i = 0 if di < 0,

then PS+n (M) = VD̄VT.

Proof By Theorem 2.1, PS+n (M) is the unique element M̃ such that

Tr[(M − M̃)(S− M̃)] ≤ 0, ∀S ∈ S+n .

A simple verification shows that VD̄VT satisfies the above condition. �
Using the above lemma one can compute the projection onto S+n + E for any

symmetric matrix E. Here a general result is provided.

Lemma 3.3 Given a closed convex subset S of a Hilbert space H and any element x ∈H.
Then, the projection onto S+ x is given by

PS+x(y) = PS(y− x)+ x, ∀y ∈ H . (26)

Proof Using Theorem 2.1 we have

〈PS(y− x)− (y− x), PS(y− x)− h〉 ≤ 0, ∀h ∈ S.

This implies

〈(PS(y− x)+ x)− y, (PS(y− x)+ x)− (x+ h)〉 ≤ 0, ∀h ∈ S,

from which the claim PS+x(y) = PS(y− x)+ x follows. �
Based on the preceding lemmas, one can present the alternating projection algo-

rithm explicitly as follows.
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Algorithm 3.1 The numerical scheme for solving Problem (24) is given as follows:

• Initialization: Choose any S1 ∈ Sn

• Step 1: S2k =
p∑

i=1

αiLi, where L1, . . . , Lp is basis of L,

(α1, . . . , αp)T = G−1(Tr(S2k−1L1), . . . , Tr(S2k−1Lp))T ,

and G = (Tr(LiLj))1≤i,j≤p.
If λmin(S2k) > 0 then stop, else go to step 2.
• Step 2: Let S2k = Vdiag(d1, . . . , dn)VT be the eigenvalue-eigenvector decomposi-

tion and D̄ = diag(d̄1, . . . , d̄n) given by

d̄i = di if di ≥ 1,
d̄i = 1 if di < 1,

then define S2k+1 = VD̄VT .
If S2k+1 ∈ L stop, else k← k+ 1 and go to step 1.

We now present a more explicit form of our numerical procedure to solve the LMI
problem (17) .

Algorithm 3.2 The numerical scheme for solving Problem (17) is given as follows:

• Initialization: Choose any (S1, r1) ∈ Sn ×R and define G := [Tr(AiAj)+ bibj]i,j≤m.

• Step 1: Projection onto the linear space

L = {(S, r) ∈ Sn × R|Tr(AiS)− bir = 0, i = 1, . . . , m}
(S2k, r2k) = PL((S2k−1, r2k−1)) with

S2k = S2k−1 −
m∑

i=1

αiAi,

r2k = r2k−1 +
m∑

i=1

αibi,

(α1, . . . , αm)T = G−1[Tr(A1S2k−1)− b1r2k−1, . . . , Tr(AmS2k−1)− bmr2k−1]T .

If λmin(S2k) > 0 and r2k > 0 then a feasible solution to the LMI problem (17) is
S = S2k/r2k and stop, else go to step 2.
• Step 2: Projection onto (S+n + I)× (R+ + 1) (by using a translation e = (I, 1)):

(S2k+1, r2k+1) = P(S+n +I)×(R++1)((S2k, r2k)),
where
r2k+1 = max(1, r2k),
S2k+1 = Vdiag(max(d1, 1), . . . , max(dn, 1))VT , and S2k = Vdiag(d1, . . . , dn)VT is
the eigenvalue-eigenvector decomposition of S2k.
If S2k+1 ∈ L, then a feasible solution to the LMI problem (17) is S = S2k+1/r2k+1
and stop, else k← k+ 1 and go to step 1.
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In addition to the above concrete form of the algorithm one can also derive an
explicit bound on the number of necessary iteration steps. The next theorem is an
immediate consequence of Theorem (2.3) and the following lemma, whose proof
is obvious from the formula for the metric projection and the fact that the minimal
distance of any positive semidefinite matrix E to S+n is at least (even equal to) λmin(E).

Lemma 3.4 For any X ∈ Sn and E ∈ S+n
‖PS+n +E(X)−X‖2 ≥ λmin(E)2, if λmin(X) ≤ 0.

Theorem 3.2 Assume that
o
S
+
n ∩ L �= ø. Choosing any E > 0 and starting from any

element S0 ∈ Sn, we have that the following sequence

S1 = PL(S0),
S2 = PS+n +E(S1),

...
S2m = PS+n +E(S2m−1),

S2m+1 = PL(S2m),
...

(27)

converges in a finite number of steps to Ŝ ∈ o
S
+
n ∩ L . Moreover, the algorithm finds

Ŝ ∈
o

S+n ∩ L in M iterations with

M ≤ λmin(E)−2dist(S0, (S+n + E) ∩ L))2. (28)

In particular, if E := I is chosen as the identity matrix, then

M ≤ dist(S0, (S+n + I) ∩ L))2 (29)

iterations are sufficient.

4 Extensions

A standing assumption of the previously discussed feasibility problems is that a solu-

tion in the interior of one of the constraints (x ∈ o
C1 ∩ C2) is available. When this

condition does not hold, the proposed algorithm is not guaranteed to find a solu-
tion in finite steps. In fact, although the algorithm is defined for any LMI feasibility
problem (strict or nonstrict), convergence in the latter case will only be asymptotic.

One interesting fact about the feasibility problems with constraints having an empty
interior, is that one can easily detect the unsolvability of such problems. Indeed, as we
show in the sequel, there is always a finite steps procedure for checking infeasibility.

4.1 Semidefinite LMI

Consider the semidefinite feasibility problem in the form

Find Z ≥ 0 such that
Tr(FiZ) = bi, i = 1, . . . , m,
where the Fi’s are linearly independent symmetric matrices

(30)
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or as

Find x ∈ R
m such that

F(x) ≡ F0 +
m∑

i=1

xiFi ≥ 0,

where F1, . . . , Fm are linearly independent symmetric matrices.

(31)

The above formulations consist in finding a solution in the intersection of the cone
of positive semidefinite matrices and a given affine subspace. Hence, the MAP pro-
cedure can be applied without any conification to provide a solution. However, in
contrast to the previous results, we can only guarantee asymptotic convergence.

Define the Gramian matrix G associated to F0, . . . , Fm by

G = (Tr(FiFj))i,j≤m.

The projection onto the affine space

A1 = {Z = ZT |Tr(FiZ) = bi, i = 1, . . . , m},
is given by

PA1(Z) = Z−
m∑

i=1

αiFi,

(α1, . . . , αm)T = G−1[Tr(ZF1)+ b1, . . . , Tr(ZFm)+ bm]T .

Similarly, the projection onto the affine space A2 associated to (31), where

A2 = {F0 +
m∑

i=1

xiFi|x ∈ R
m}

is computed as

PA2(F) =
m∑

i=1

αiFi + F0,

(α1, . . . , αm)T = G−1[Tr((F − F0)F1), . . . , Tr((F − F0)Fm)]T .

Based on Theorem 2.3, the following numerical algorithm converges asymptotically
(with linear convergence rate) to a feasible point satisfying (30) (resp. (31)).

Algorithm 4.1 To solve problem (30) (resp., problem (31)), execute the following steps.

• Initialization: Choose any S = ST and let S1 = S.
• Step 1: S2k = PA1(S2k−1) (resp., S2k = PA2(S2k−1)).

If λmin(S2k) ≥ 0 then stop, else go to step 2.
• Step 2: Let S2k = Vdiag(d1, . . . , dn)VT be the eigenvalue-eigenvector decomposition

and D̄ = diag(d̄1, . . . , d̄n) given by
{

d̄i = di if di ≥ 0,
d̄i = 0 if di < 0,

then define S2k+1 = VD̄VT .
If S2k+1 ∈ A1 (resp., S2k+1 ∈ A2) then stop, else go to step 1.
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4.2 Semidefinite programming

It is a well known consequence of duality theory, that linear programming problems
can be recast as convex feasibility problems. The same approach also works for linear
optimization over LMI constraints. Explicitly, we show—under the strict feasibility
condition—how to obtain in a finite number of steps an approximate optimal solution
within a given accuracy.

Definition 4.1 Given a vector c = (c1, . . . , cm)T ∈ R
m and symmetric matrices

F0, F1, . . . , Fm, then the following optimization problem

min cTx,

subject to F(x) := F0 +
m∑

i=1

xiFi ≥ 0 (32)

is called a SDP problem. In addition, the dual SDP problem is defined as

max{−Tr(F0Z)},
subject to Z ≥ 0, Tr(ZFi) = ci for i = 1, . . . , m.

(33)

Using duality theory (see, e.g., Luenberger 1969, Nesterov and Nemerovski 1994,
Vandenberghe and Boyd 1996), one can transform a linear cost optimization prob-
lem over LMI constraints into a convex feasibility problem. This can be done by just
zeroing the duality gap between the primal problem and its dual. Here are the details.

Let p∗ denote the optimal value of the SDP (32) as

p∗ := inf{cTx | F(x) ≥ 0},
and d∗ denote the optimal value of the dual SDP problem (33) as

d∗ := sup{−Tr(F0Z) | Z ≥ 0, Tr(ZFi) = ci, i = 1, . . . , m}.
The following result is well-known.

Theorem 4.1 The optimal values of the SDP problem and its dual are such that p∗ ≥ d∗.
Moreover, if the primal problem and its dual are both strictly feasible we have p∗ = d∗.

Thus, assuming that the primal problem (32) and its dual (33) are both strictly
feasible, then the set of optimal solutions is exactly the set of feasible solutions to the
LMI in Z, x

Tr(F0Z)+ cTx = 0,
Tr(ZFi)− ci = 0,

Z ≥ 0, F0 +
m∑

i=1

xiFi ≥ 0.

One can apply the previous algorithm to compute an optimal solution. To see how
this goes, let ε > 0 and consider the following strict feasibility problem

Tr(F0Z)+ cTx = ε,
Tr(FiZ)− ci = 0,

Z > 0, F0 +
m∑

i=1

xiFi > 0.
(34)
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Let x∗, Z∗ be optimal solutions to the primal and the dual problems, respectively.
Choose any strictly feasible solutions x, Z to the primal and the dual problems and
define for 0 < t < 1

xt = tx∗ + (1− t)x and Zt = tZ∗ + (1− t)Z.

By convexity we have Zt > 0 , Tr(FiZt) − ci = 0 and also F0 +
m∑

i=1

xt
iFi > 0. Choose

ε > 0 sufficiently small so that

t = 1− ε

Tr(F0Z)+ cTx

is between 0 and 1. Note that, by the duality gap inequality, we always have that
Tr(F0Z) + cTx > 0, unless we are at the optimum. Since Tr(F0Z∗) + cTx∗ = 0 then
Tr(F0Zt)+ cTxt = ε. Therefore, the strict feasibility problem (34) has a solution xt, Zt.

On the other hand, if xε denotes a feasible solution to (34), then xε provides an
ε-approximate optimal solution to (32), that is |p∗−cTxε | ≤ ε. Therefore, it suffices to
solve (34). To this end, we show how one can cast problem (34) into our framework.

Since the Fi are linearly independent, a solution F−1 :=
m∑

i=1

βiFi to

Tr(FiF−1) = ci i = 1, . . . , m,

exists and it is given by (β1, . . . , βm)T = G−1(c1, . . . , cm)T (G is the Gramian matrix
of the Fi).

Using this matrix F−1, the constraint Tr(F0Z)+ cTx = ε in (34) is expressed equiv-
alently as

Tr(F0Z)+ Tr
(

F−1(F0 +
m∑

i=1

xiFi)

)
= ε + Tr(F−1F0).

Now, define Fm+1, . . . , F n(n+1)
2

to be a basis of the orthogonal complement of F1, . . . , Fm

and let

X := F0 +
m∑

i=1

xiFi.

Then, from the identity

Tr(FiX) = Tr(F0Fi), i = m+ 1, . . . ,
n(n+ 1)

2
,

we conclude that the constraints (34) are equivalent to

Tr(F0Z)+ Tr(F−1X) = ε + Tr(F−1F0),
Tr(FiZ) = ci, i = 1, . . . , m,
Tr(FiX) = Tr(F0Fi), i = m+ 1, . . . , n(n+1)

2 ,
Z > 0, X > 0.

(35)

Therefore (34) is equivalent to the following standard LMI problem

Tr(Aidiag(Z, X)) = bi, i = 1, . . . , n(n+1)
2 + 1,

Z > 0, X > 0.
(36)
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Here, A1, . . . , A n(n+1)
2 +1 are linearly independent symmetric matrices of the form

b1 = ε + Tr(F−1F0),
bi = ci−1 for i = 2, . . . , m+ 1,
bi = Tr(F0Fi−1) for i = m+ 2, . . . , n(n+1)

2 + 1,

A1 =
[

F0 0
0 F−1

]
,

Ai =
[

Fi−1 0
0 0

]
for i = 2, . . . , m+ 1,

Ai =
[

0 0
0 Fi−1

]
for i = m+ 2, . . . , n(n+1)

2 + 1.

(37)

4.3 Infeasibility problem

Before applying any of the previous algorithms it is of obvious interest to know
whether or not a feasible solution exists. Infeasibility, i.e., the nonexistence of a non-
trivial solution, can be easily detected by running the algorithm for a dual problem.

Theorem 4.2 Let C be a closed convex solid cone and S be a closed convex set. Then,
the following are equivalent

(i)
o
C ∩S �= ø.

(ii) C∗ ∩ (−S∗) = 0.

Proof The result will be proved by contradiction.
(i)⇒ (ii). Assume that there exists x �= 0 and x ∈ C∗ ∩ (−S∗). Let y be any element in
o
C ∩S �= ø. Then, by definition of the dual set and since −x ∈ S∗, we have necessarily

〈x, y〉 ≤ 0. Also, since y ∈o
C then by Lemma 2.1 we have 〈x, y〉 > 0 which leads to a

contradiction.
(ii)⇒ (i) If

o
C ∩S = ø, then using the separation theorem for convex sets (see, e.g.,

Luenberger 1969) there exists a nonzero element h ∈H satisfying

〈h, c〉 ≥ 0, ∀c ∈ C,
〈h, s〉 ≤ 0, ∀s ∈ S,

(38)

so that h belongs to C∗ ∩ (−S∗) = 0 which leads to a contradiction. �
Let us specialize the above result to the case of semidefinite LMI problems, i.e.

to the task of finding a nontrivial solution in the intersection of the cone of positive
semidefinite matrices and a linear subspace. First, recall that the dual of a linear sub-
space L is its orthogonal L⊥ and L = (L⊥)⊥. Also, the cone S+n is self-dual: S+n = S+∗n
(see Berman 1973). Thus from Theorem 4.2 we have the following result.

Corollary 4.1
o

S+n ∩ L⊥ �= ø if and only if there exists no nontrivial P �= 0 with
P ∈ S+n ∩ L.

In particular, the nontrivial solvability of P ∈ S+n ∩ L can be decided in finitely

many steps, by running Algorithm 3.1 for the conic feasibility problem
o

S+n ∩ L⊥ �= ø.
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5 Conclusion

A finite step projection algorithm is presented for solving general conic feasibility
problems. In particular, the method applies to LMI problems, which in turn, reduce to
solve a sequence of symmetric eigenvalue decompositions. The proposed algorithm
has several advantages. First, a solution can be obtained in a finite number of steps. It
also works for checking certain infeasibility problems. Moreover, the method is well
adapted to large scale problems with several small size constraints.

Acknowledgements M. Ait Rami and U. Helmke were partially supported by the German-Israeli
Foundation for Scientific Research and Development grant GIF-I-526-034.06/97 and by the DAAD
grant D/0243869. J. B. Moore was supported by the ARC discovery grants A00105829, DP0450539, and
in part by National ICT Australia, which is funded by the Australian Government Backing Australia’s
Ability Initiative in part through the Australian Research Council.

References

Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems.
SIAM Rev. 38(3), 367–426 (1996)

Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control
Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994)

Berman, L.M.: Cones, Matrices and Mathematical Programming. Lecture Notes in Economics and
Mathematical Systems, vol. 79. Springer, Berlin (1973)

Bregman, L.M.: The method of successive projection for finding a common point of convex sets. Soviet
Math. Doklay 6(3), 688–692 (1965)

Gahinet, P., Nemirovski, A.: The projective method for solving linear matrix inequalities. Math.
Program. 77, 163–190 (1997)

Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of
convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967)

Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395
(1984)

Han, S.P.: A successive projection method. Math. Program. 40, 1–14 (1988)
Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)
Nesterov, Yu., Nemerovski, A.: Interior Polynomial Point Methods in Convex Programming, SIAM

Studies in Applied Mathematics. SIAM, Philadelphia (1994)
Orsi, R., Ait Rami, M., Moore, J.B.: A finite step projective algorithm for solving linear matrix

inequalities. In: Proceedings of the 42nd Conference on Decision and Control, Maui, Hawaii, USA,
pp. 4979–4984 (2003)

Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications.
Math. Program. 77, 129–162 (1997)

Skelton, R., Iwasaki, T., Grigoriadis, K.: A unified algebraic approach to linear control design. Taylor
& Francis, London (1997)

Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.
Methods Software 11–12, 625–653 (1999)

Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
Von Neumann, J.: Functional Operators, vol. II. Princeton University Press, Princeton, NJ (1950) (this

is a reprint of mineographed lecture notes distributed in 1933)


	A finite steps algorithm for solving convex feasibility problems
	Abstract
	Introduction
	General approach
	Preliminaries
	Convex cones
	Conic feasibility problem
	Convex feasibility problems
	LMI feasibility problem
	Extensions
	Semidefinite LMI
	Semidefinite programming
	Infeasibility problem
	Conclusion
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


